Complex Analysis
Midterm Exam
7 December 2020

The exam consists of five problems worth a total of nine points; you get one initial bonus point. This file only contains Problem 1. Your solution to this problem should consist of a single PDF file (named problem1.pdf). All files containing your solutions need to be uploaded together, under the Midterm Exam assignment on Nestor, before 11:20 (UTC+1).

Problem 1 [1.5 points]

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be the function defined by

$$
f(z+\dot{\mathrm{i}} y)= \begin{cases}\frac{\sqrt{x^{2} y^{4}}+\dot{\mathrm{i}} \sqrt{x^{4} y^{2}}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{cases}
$$

Check whether the Cauchy-Riemann equations hold for f at the origin and decide whether f is differentiable at the origin.
[Note: You need only consider the partial derivatives at one point.]

Complex Analysis
Midterm Exam
7 December 2020

The exam consists of five problems worth a total of nine points; you get one initial bonus point. This file only contains Problem 2. Your solution to this problem should consist of a single PDF file (named problem2.pdf). All files containing your solutions need to be uploaded together, under the Midterm Exam assignment on Nestor, before 11:20 (UTC+1).

Problem 2 [2 points]

a) Let $z=r e^{\mathrm{i} \theta}$ and let

$$
f(z)=u(r, \theta)+\dot{\mathrm{i}} v(r, \theta)
$$

be a function that is differentiable at $z_{0}=r_{0} e^{\mathrm{i} \theta_{0}}$. Show that the following equalities hold:

$$
\begin{aligned}
r_{0} \frac{\partial u}{\partial r}\left(r_{0}, \theta_{0}\right) & =\frac{\partial v}{\partial \theta}\left(r_{0}, \theta_{0}\right) \\
\frac{\partial u}{\partial \theta}\left(r_{0}, \theta_{0}\right) & =-r_{0} \frac{\partial v}{\partial r}\left(r_{0}, \theta_{0}\right)
\end{aligned}
$$

[Hint: Recall the chain rule for real multivariate functions.]
b) Suppose that

$$
v=\frac{\cos \theta+\sin \theta}{r}
$$

is the imaginary part of a function $f(z)=f\left(r e^{\mathrm{i} \theta}\right)$ that is analytic on the domain $\mathbb{C}^{\times}=\mathbb{C} \backslash\{0\}$ and satisfies $f(-1)=1-i$. Determine $f(z)$, i.e. express f as a function of z.

Complex Analysis
Midterm Exam
7 December 2020

The exam consists of five problems worth a total of nine points; you get one initial bonus point. This file only contains Problem 3. Your solution to this problem should consist of a single PDF file (named problem3.pdf). All files containing your solutions need to be uploaded together, under the Midterm Exam assignment on Nestor, before 11:20 (UTC+1).

Problem 3 [2 points]

Let Γ be the contour depicted below, consisting of:
i) the line segment connecting -1 and i,
ii) the parabola segment connecting i and $2+i$ and passing through 1 .

Determine the following integrals:
a) $\int_{\Gamma} \bar{z} \mathrm{~d} z$
b) $\int_{\Gamma} z \mathrm{~d} z$

Write your answer in the form $x+\mathrm{i} y$ with $x, y \in \mathbb{R}$.

Complex Analysis
Midterm Exam
7 December 2020

The exam consists of five problems worth a total of nine points; you get one initial bonus point. This file only contains Problem 4. Your solution to this problem should consist of a single PDF file (named problem4.pdf). All files containing your solutions need to be uploaded together, under the Midterm Exam assignment on Nestor, before 11:20 (UTC+1).

Problem 4 [2 points]

Let Γ be the circle $|z-\mathrm{i}|=1$. Determine the integral

$$
\int_{\Gamma} \frac{z \sin (\pi z)}{\left(z^{2}+1\right)^{2}} \mathrm{~d} z
$$

Write your answer in the form $x+\dot{\mathrm{i}} y$ with $x, y \in \mathbb{R}$.

Complex Analysis
Midterm Exam
7 December 2020

The exam consists of five problems worth a total of nine points; you get one initial bonus point. This file only contains Problem 5. Your solution to this problem should consist of a single PDF file (named problem5.pdf). All files containing your solutions need to be uploaded together, under the Midterm Exam assignment on Nestor, before 11:20 (UTC+1).

Problem 5 [1.5 points]

Let D be a bounded domain and let $\bar{D}=D \cup \partial D$ (the union of D and its boundary). Let $f: \bar{D} \rightarrow \mathbb{C}$ be a non-constant continuous function that is analytic on D. Suppose that there exists a point $z^{*} \in D$ such that

$$
\left|f\left(z^{*}\right)\right|<\min _{z \in \partial D}|f(z)|
$$

Show that f has a zero in D.

